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THE TURBUI.ENT HEAT FLUX IN LOW MACH NUMBER FLOWS

WITH I.ARGE I)ENSITY VARIATIONS

Peter J. O'Rourke and Lance R. Collins

Theoretical Division, Group T-3
I.os Alamos National l,aboratory
Los Alamos, New Mexico 87545

1. INTROI)UCTION: THE DIRECTED ENERGY FLUX

This paper is concerned with a physical effect of fundamental importance
for the modeling of turbulence transport in flows with large density variations.
The effect occurs because the interaction of pressure and density gradients gives
rise to a turbulent heat flux, which we call a directed flux, that is not accounted

for in turbulence models for constant density flows. To see how this flux arises, it
is perhaps best to consider an example of Rayleigh-Taylor instability, as depicted
in Fig. 1. A heavy, cold gas overlays a light, hot gas in a box with a gravitational
acceleration in the negative z-direction. The induced hydrostatic pressure gradi-
ent accelerates the light gas into the heavy gas and causes the instability and
mixing. The velocities averaged across a horizontal plane are in the z-direction,
and because the heavy gases are falling, the mass-averaged velocities in the
mixing region will be negative. Relative to a surface moving downward with the
mass-averaged velocity, there will be a net upward flux of energy. This is
because although the mass flux of light gas crossing the surface upward equals
the mass flux of heavy gas crossing downward, the light gas, being hotter, carries
with it more energy per unit mass.

This upward energy flux is the directed flux. In the example of Fig. 1, this
energy flux is in the direction of the negative of the temperature gradient, just as
given by the laminar Fourier heat conduction law. If after some time we were to
turn the box over so that the light gas overlay the heavy gas, to the extent that
the two gases had not already mixed on the molecular level, there would be an
unmixing in which the light gas would separate from the heavy gas. In this

Heavy, cold gas

Light, hot gas

z

I gravity

Fig. 1. Schematic depiction of
Rayleigh-Taylor instability.

162



unmixing process, the directed heat flux would be upward, in the direction of the
mean temperature gradient and opposite the direction given by the Fourier heat
conduction law. This phenomenon has thus been called countergradient diffu-
sion. 1 It cannot be predicted by turbulence models that use gradient transport, or
a Fourier-like law, to describe turbulent heat transport. In our example, the tur-
bulent heat flux _h is in the direction opposed to the pressure gradient, rather
than the temperature gradient. We shall see that taking ¢bh _ - vp is often more
realistic for turbulent flows.

Between single-phase, two-density turbulent flows and two-phase flows
there is an analogy that we will exploit in our turbulence modeling. This analogy
will be used in helping to formulate the equations and in developing closure
approximations for some of the terms. In two-phase flow modeling, which has
received much attention within the last ten years2,3 separate mass, momentum,
and energy equations are kept for each phase, and these equations are coupled
through functions that give the exchange rates of mass, momentum, and energy
between the phases. Following Besnard, Harlow, and Rauenzahn,4 we will use
an alternative, analogous formulation. In place of two mass equations, we will
keep an equation for the mean density and one for density fluctuations. In place
of two momentum equations, we will keep a mean momentum equation and an
equation for mean velocity differences associated with fluid elements of differing
density. We use this second formulation because it allows for the possibility of
modeling not just two-density flows, but the flows with a spectrum of densities
that often occur in practical applications.

Two physical examples, one of two-phase flow and one of single-phase flow
with density variations, serve to illustrate the analogy and another situation in
which countergradient transport can arise. In both examples, pressure gradients
are responsible for centrifuging lighter material inward toward the centers of
rotating flows. In a two-phase bubbly flow, this effect has been observed in the
vortices in the wake of an obstacle.5 In single-phase flow, it is probably responsi-

ble for the experimental results of Wahiduzzaman and Fer.guson.6 The experi-
menters measured the radial temperature profiles in an axmymmetric swirling
flow in a constant volume cylinder. The experimentally measured temperatures
are plotted at four different times as the circles in Fig. 2. The lines are computed
temperature profiles using the KIVA code7 with a k-c turbulence model8 and
gradient heat transport with a turbulent Prandtl number of 0.9. It can be seen
that a hot region in the center of the cylinder persists much longer in the experi-
ment than in the calculation, showing the large errors that can arise when a

gradient heat transport approximation is used.
The phenomenon of countergradient transport in single-phase flows was

recognized seven years ago in research on the structure of turbulent premixed
flames.1 In retrospect, it is easy to see how this phenomenon arises. Figure 3
depicts schematically a planar turbulent premixed flame with velocities shown in
the frame of reference of the flame. Mass conservation and the fact that the com-

bustion is nearly isobaric together imply that the hot product gas velocities will
be larger than those in the reactants. Momentum conservation then implies that
the pressure in the products will be lower than in the reactants. Since the dir-
ected heat flux is in the direction opposed to the pressure gradient, this heat flux
will be from the colder to the hotter gases; that is, it will be countergradient
transport.

Two approaches have been used for modeling turbulent premixed flames -- a
single-phase formulation and a two-phase formulation. In the single-phase for-
mulation of Bray, Moss, and Libbyl,9-11 (BML formulation), equations are kept
for the mean product gas concentration, the mean momentum, the turbulent
fluxes of these quantities, and for the dissipation rate of turbulent kinetic energy.
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Fig. 2. Experimentally measured (Ref. 6) and computed (KIVA code) radial
temperature profiles at four different times.
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Reactants

1_ rbulent

Flame

Zone

Products

Fig. 3. Schematic depiction of a turbulent premixed flame.

Spaldingl2 utilizes a two-phase formulation, retaining mass, momentum, and
energy equations for each phase. Spaldingl2 assumes that the major source of
mixing is due to the difference between the mean velocity of the phases and thus
ignores the turbulent kinetic energy within each phase. The BML formulation
accounts for both sources to the turbulent kinetic energy. In principle, the equa-
tions of one formulation should be derivable in terms of those of the other, al-

though to our knowledge such a derivation and comparison have not been made.
In this paper some closure approximations are proposed, based on a derivation of
the single-phase equations from two-phase equations. Only the BML formulation
has been compared with experimental measurements of turbulent flames, l I and
satisfactory agreement was obtained.

In practical applications of turbulent combustion, other physical effects that
cause mixing and unmixing are superimposed on the pressure drop across the
flame. At Los Alamos, we have been involved for the past twelve years in the
numerical modeling of combustion in internal combustion engines.7,!3-16
Figure 4 illustrates some of the complexities of the turbulence/chemistry inter-
action in an engine burning premixed charges. A turbulent premixed flame is
propagating away from an ignitor located near the center of the cylinder head
wall. Mach numbers are small, and thus the mean pressure is nearly uniform in
space!7 and changing with time due to piston motion, combustion, and wall heat
loss. Near the top of its motion, the piston, and the axial flow velocities in the
combustion chamber, decelerate. This causes a small positive axial pressure
gradient and induces Rayleigh-Taylor instability and mixing where the flame is
propagating downward in the axial direction. This same pressure gradient will
cause a differential axial acceleration of the hot products and cool reactants and

promote Kelvin-Helmholtz instability where the flame is propagating radially.
isSwirl, a nearly symmetric rotational motion of the burning gases, " introduced

by engine designers to promote mixing but will have two competing effects in the
engine of Fig. 4. Swirl induced shears will enhance turbulence and mixing, but
the radial pressure gradient caused by the swirl will, as in the experiments of
Wahiduzzaman and Ferguson,6 cause countergradient transport and suppress
mixing. It is important to point out that among these various turbulence effects,
only those associated with shear instability and mixing are accounted for in
current engine models.

In predicting turbulence in internal combustion engines and other practical
combustors, one cannot use two-phase models or single-phase equations for two

density flows. This is because within the reactants and products there will be
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Fig. 4. The turbulence/chemistry interaction in an internal combustion engine.

distributions of density. In the engine of Fig. 4 density differences will arise due
to wall heat transfer and due to entropy differences in the product gases of this
confined burn.IS In other combustors density distributions are caused by charge
non-uniformity and spray vaporization.

In the next section we derive preliminary equations for a turbulent fluid
with large density variations. Our aim is to develop a model that has three
attributes:

(1) the model can predict mixing and unmixing due to shear instabilities and
pressure-density gradient interactions;

(2) the model can account for a distribution of densities; and
(3) the model equations can be efficiently integrated in two and three

dimensions.

The second attribute precludes use of two-phase flow equations, although investi-
gation of the two-density limit will yield valuable information. The third attri-
bute precludes use of the Reynolds stress equations, especially in three dimen-
sions. It seems appropriate to seek a simple one- or two-equation extension of
popular two-equation models for turbulent shear flows.

If. THE EQUATIONS

A. Overview

We first derive equations for the average density 15and the Favre-averaged
velocity d and enthalpy h. Using the low Mach number assumption, we relate
the turbulent heat flux _h to the difference between the average velocity d and
the Favre-averaged velocity d. We denote this difference _ - d by a, and the
transport equation for a is derived and discussed. Closure approximations for
terms in the a-equation are postulated based on the analogy between two-phase
flows and single-phase, two-density flows. A comparison between the single-
phase and two-phase equations suggests that the fluctuating stress terms in the
a-equation are primarily associated with the decay ofa. We present an algebraic
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closure approximation for a that results in a heat flux that is the sum of contribu-
tions due to gradient and directed transport. Our a-equation is compared with
similar equations in the literature.

B. The Equations of a Low Mach Number Flow with Large Density Variations
For the low Mach number flow of a single component ideal gas with large

density variations, the equations are the following: 19

op (1)
-- + Y • (pu) = 0 , (continuity)
Ot

opu (2)
+ V. (puu) + Vp = V.o + pg , (momentum)

Ot

8ph dP (3)
-- + V. (puh) = -- + Q , (enthalpy)
Ot dt

P (t) M = pRT ,
w

and

(thermal equation of state) (4)

ITh(T) = c (_) d L (caloric equation of state) (5)
p

where o is the laminar viscous stress tensor, Q is the volumetric rate of heating
due to such sources as chemical reaction or divergence of the laminar heat flux,
P(t) is the volume average pressure of the system, p(x,t) is the pressure fluctua-
tion from the mean value P(t), aod Mw is the molecular weight of the gas. For low

Mach number flows Ipl/P _ M z, where M is the Mach number.17 From these
equations one can derive an equation for the divergence of the velocity field: ,9

1 dP y- 1
v. u .... + _ O (6)

yP dt yl"

In an open flow system, P is just the ambient pressure; for flow in a closed volume
V, an equation for P can be derived by integrating (6) over V:

1 dP 1 dV y- 1 1- -- -- + O do. (7)
yP dt V dt yP V Jv

C. The Averaged Equations
In our turbulence equations we will use both unweighted averaged quanti-

ties and Favre (density-weighted) averaged quantities. The unweighted average

and Favre average of a quantity _ are defined respectively by

and

1 (8)
(x, t) - NE _-- _ba(x' t)

a
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_(x, t) _ _ 1 1
p(x,t) NE Z pQ(x,t)¢a(X,t)

a

(9)

where ensemble averages are used, _ba being the value of _b in a particular
experiment a and NE being the number of experiments in the ensemble. The
fluctuations from these averages are denoted by

¢'= ¢a - ¢ (10)

and

where we drop the subscript a on the fluctuations.
By averaging Eqs. (1)-(5) we obtain the turbulence equations:

(11)

o_p0+ v.(pu)= 0, (12)
8t

-- +V.(puu)+Vp=V.R+V.o + pg, (13)
at

8p h -~~ dP -- a.h
+V.Cphu)= -- + Q -v.,e , (14)

at dt

P M = p RT, (15)
W

and

f
= | c (0dr (16)

J p

where th@nolds stress R is given by - pu"u" and the turbulent heat flux oh is
given by _ In deriving Eq. (16) we have assumed that the characteristic tem-

peratures over which significant changes in cp occur, are much larger than char-
acteristic temperature fluctuations T"

D. An Alternative Expression for Oh
An alternative expression for the turbulent heat flux can be derived from

the averaged and unaveraged equations of state. Subtracting (15) from (4)
results in

P'M = pRT- pR7_'= pRT" + p'RT". (17)
W

We now assume that

m

IF'l/P << . (18)
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Under this assumption the left-hand side of(17) can be neglected, and we obtain

'r" = - 7' p-' (19)
P

wherein temperature and density fluctuations are directly related.
The assumption (18) requires some discussion. It will certainly be true for

an open flow system, because the P is always the ambient pressure and never
fluctuates. In a closed system, such as in internal combustion engine cylinder,

there can be significant fluctuations in the mean pressure P, primarily due to
fluctuations in the chemical heat release rate. In an internal combustion engine

these are referred to as cycle-to-cycle variations, and there is currently some
debate 20 whether or not these cycle-to-cycle variations should be called turbu-
lence. We recommend that in performing the averages (8) and (9) one should_use

only experiments for which the mean pressure history P(t) is nearly equal to P(t).
When this limited ensemble average is used, the assumption (18) is automat-

ically satisfied.
Subtracting (16) from (5) gives

" ~
h" = c (0 dr = c (T) T" (20)

P P '

where again we use the assumption that Cp varies little for temperature changes
equal to T'. Using (20) and (19) in the defining formula for _h gives

_ph = pu"h"

= -%(T) T p'u"

= pc (T)Ta
p

(21)

where

- ~ (22)
a= u _ = u -u.

Equation (21) is the alternative expression we seek for the heat flux. It says
that (l)h is proportional to a quantity a that can be loosely thought of as the differ-
ence between the volume-averaged and mass-averaged velocities. In a two-

density or two-phase system, a is proportional to the difference between the veloc-
ities of the two phases. In order to investigate further the nature of the turbulent
heat flux, we must derive a transport equation for a.

E. The Transport Equation for a
The transport equation for a is obtained by subtracting the equation for the

mass-averaged velocity u from that for the volume-averaged velocity ft. The
result is
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- v +-vv'
at p p

=-=v.a+ -- v.o +-v.o' . (23)
p P P

As an aid in modeling some of the terms in Eq. (23) we will derive an
a-equation for two-phase flows and compare this with Eq. (23). It will turn out
that all of the terms in Eq. (23), with the exception of those associated with the
fluctuating stresses p' and o', will be duplicated exactly by terms in the
a-equation for two-phase flows. The terms I/p Vp' and 1/p v'. o' are then associ-
ated with terms in the two-phase a-equation that arise due to momentum

exchange between the phases. With this comparison as a guide we postulate a
model for the fluctuating stress terms.

We now briefly introduce the equations for two-phase flow. For more details
the interested reader should consult Refs. 2 and 3. For simplicity we restrict our-
selves to the flow of two incompressible phases. The continuity equations for each
phase are

and

ap lct! -1 (24)
at + V -(PlOl u ) = d21

aP2a2 = (25)
-- + V-(92o2 _-2) = J12 --"]21 "

Ot

In these equations Pi are the microscopic (or conditional) densities, which we
assume to be constant; fii are the average velocities within each phase (where the
"i" next to the overbar indicates a conditional average in phase i); ai are the vol-
ume fractions of each phase (al + a2 -- 1); and J21 is the rate of mass transfer per
unit volume from phase 2 to phase 1. The momentum equations for each phase
are

and

--1

_PlOl u

at

--I--I
+ V .(plalu u ) + alV p = plolg + OlV- o + V .(aiR 1) + |'21

(26)

--2

aP202U

dt

--2--2

+ V.(P2O2 u u )+o2Vp = P2a2 g+ct2V- O + V.(o2R 2)- P21
(27)

As is commonly done in two-phase flow modeling,2 we assume here that the
phases are in local pressure equilibrium; that is/31 =/32 = /3. The conditional
Reynolds stresses Ri are given by
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Ri p,(u u')(u -L---- -- -- -- U ) .

The rate of momentum exchange per unit volume from phase 2 to phase 1 is

denoted by P21.
Average flow variables fare related to the averages within each phase _ri by

-1 --2

= af + %f

Thus, for example,

(28)

p : oip I + a2P 2
(29)

and

--1 --2

pu = alplu + %p2u

By using the relations (29) and adding Eqs. (24) and (25) and Eqs. (26) and (27) we
obtain the same total mass and momentum equations, Eqs. (12) and (13), that we

have previously derived, when it is realized that

R = aiR l + a2R 2

-1
- plat(u - u)(_ 1 _ _)

--2 --2

-p2%(u -u)(u -u)

Thus the mass-averaged velocity equation is

(30)

3u 1 1 -- 1
-- +u.Vu+ =Vp = =V.o + :V.R +g. (31)
0t p p p

To obtain the a-equation, we will subtract (31) from an equation for fi,
which will now be derived. By dividing (26) by pl and (27) by P2 and summing the

results, we obtain

Ou -t-I

-- + V .(alu u
Ot

22+a2u u )+ - Vp
P

=g+ V. 0 +V- --RI+- R2 + P21 ---- "
Pl P2 Pl P2

(32)

It can be seen that
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V o

I --1--I --2--2 a 1 a2 Ialu u + a2u u ---- R I- -- R 2
Pl 92

=V-(uu)= u.Vu + uV-u

Using (33) in (32) and subtracting (31) yields the two-phase a-equation:

0a
--+ u.Vu -u.Vu+ uV.u +
at

' ') - (' 'i
= -- =p V.R + -p - =p V. 0 + P21 Pl 92

Comparing (34) and (23), we see they agree i__f

(33)

(34)

1 1 - (1 1)
-p Vp'- -p V.o' = uV .u + t"21 P2 Pi (35)

This is the relationship we seek between the fluctuating stress terms and the two-
phase momentum transfer terms. To obtain closure we need to postulate a form
for P21, and we will investigate expressions employed in two-phase flow
modeling.

F. Expressions for the Momentum Exchange Rate in Two-Phase Flows
For a dispersed phase 2 of equal-sized spherical particles of radius r in a

continuous phase 1, an expression for the momentum transfer term is21

3 Pla2 lu 2 u'l(u 2 -' --"2
= -- -- U ) + J21 u (36)P2I 8 cl) r

Thus, P21 has two terms -- one due to aerodynamic drag and one due to mass
exchange. This form of the mass exchange term assumes there are no circulation
velocities within the particles. Equation (36) has theoretical justification21 when
P2 > > Pl and velocities within each phase are sharply peaked near their mean
values. It neglects virtual mass effects, Basset history effects, and particle dis-
tortions and oscillations.22

Motivated by Eq. (36), modelers usually use a similar expression for all two-
phase regimes:2

- d -_ (37)|'21 ---- K(u2 _1) + 21 u

where.K is called the drag function and fis is some average interface velocity. The
quantity Kis a positive function ofpl, P2, ai, a2, [fi2 _ fil_, and an entity size r.

11 we accept Eq. (37) then one is led to the postulate that the fluctuating
stress terms in the a-equation (23) contribute to the decay of a. Indeed one can
show that for a two-phase flow

aia2(Pl - p2)
a = _ (u 2 - u l) , (38)

P
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and (38), in conjunction with (35) and (37), gives

-Vp'- -V.o' =
P P

where

1 1 )--s
uV.u +K'a+J21 P2 Pl u

(39)

P
K'-_K.

ala2PlP 2

K' has dimensions of a frequency.

G. Final Form of the a-Equation
After substituting (39) in (23) and some rearrangement of terms one obtains

0a (1
--at + V.(ua + au) + K'a + d21 P2

~ b1 u +uV.u+_v7
Pl P

1 1
= - =V-R-V. (u'u _) = = u*u" .Vp

P p

Here we have introduced the quantity b
density fluctuations:

1 P 'u"u"+ = V. ( ). (40)
p

as a dimensionless measure of the

b = - - 1 . (41)
p

If the density fluctuations are not too large, then b is approximately a self-
correlation coefficient for density fluctuations:

m

(p ,)2
b_-

(p)2

In fact, Ref. 4 uses

(42)

B-- (p,)2 (43)

as a measure of the density fluctuations. We will develop a transport equation for
b in future work.

Three further terms in (40) must be modeled. First we deal with the mass
exchange term. One can show from (24) and (25) that

V. U : J21 Pl P2 (44)

and hence the fourth and fifth terms on the left-hand side of(40) combine to give
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uV.u+d2_ 92 91 d2_ 92 91

We assume that t_s = u. An assessment of the validity of this assumption must

await a precise physical interpretation of the quantity 0s.
Second, for the tensor u"u" one can show that for two-phase flows

RI R,2 ( (p)2)U"U" = -- a I _ -- a2_ + 1 + -- aa
91 92 B '

(46)

where B is defined by (43) and given in two-phase flows by

B = ala2(91 -- 92 )2 •
(47a)

For future reference we also note that

t_ (47b)b-
91P2

in two-phase flows. We define the volume-averaged conditional Reynolds stress r

by

R1 R2 (48)
r=a I -- +a2m .

Pl P2

As a first approximation, and despite experimental evidence to the contrary in
turbulent flame experiments,9 we assume the conditional Reynolds stresses are

equal and isotropic. Then

R ! R2 2
- -r= - -k'!

Pl P2 3

where k' is related to the specific turbulent kinetic energy/_ = ½(ft.)2 by

(49)

l a 2 (50)
/_ = k' + - --

2 b

A transport equation for k will be developed in future work.
We also use a two-density distribution to model the triple correlation term

in Eq. (40). After some algebraic manipulation and use of the assumption (49)
one obtains

--2

( , 9)o'u",," aa.
(51)
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By substituting (45), (46), (49), and (51) in (40)and using the approximation (42)
we obtain the final form of the a-equation:

0a ~ ~ b
-- +u.Va+aV.u+a.Vu+V.(aa)+-Vp
Ot p

aa Vp 2( 1 a2)Vp--" --:- + - k
--K'a+ b p 3 2 b p

(52)

H. An Algebraic Closure Approximation

In numerical computations of multidimensional fluid flows, use of Eq. (52)
would require solving two or three additional transport equations for components
of a. Although this is not an unrealistic task for modern computers, considerable
computational efficiency would result if an accurate algebraic closure approxima-
tion for a could be found. In this section we present such an approximation based
on an assumption whose validity must be tested in experimental comparisons.
The resulting expression for a predicts gradient heat transport, but also contains
a contribution that predicts the directed flux arising from the interaction of pres-
sure gradients and density inhomogeneities.

The assumption we make is analogous to the drift flux approximation of
two-phase flow modeling.2 In two-phase modeling this assumption is that the two
velocity fields are so tightly coupled through the drag terms that characteristic
drag times are much smaller than characteristic flow times. For us the assump-
tion is that

U

K' > > '_2' (53)
L '

where Uo and L are a characteristic velocity and gradient length for the flow.
Assuming (53) is true, order of magnitude estimates of the terms in (52)

show all terms on the left-hand side can be neglected, except the pressure grad-
ient term. On the right-hand side, the dyadic product term aa is negligible since
Eqs. (38) and (47) show that a/b is proportional to the velocity difference between
fluid elements of different density. The resulting equation for a becomes

a= K' - =Vp + -k.-=- . (54)
p 3 p

Equation (54) can be put in a more recognizable form if we use

Vp v7_

1 ] b 2 VT] (55)

In conjunction with (21), Eq. (55) gives a heat flux that is the sum of contributions

proportional to -Vp and -VT. The former is the directed flux. It goes to zero in
the absence of density fluctuations b.
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The gradient transport term in (55) looks similar to the gradient heat flux
commonly used in turbulence modeling, but there is a difference. The usual form
used for the turbulent heat flux8 is

@ : - v'?
P PrT_

(56)

where Pr T is the turbulent Prandtl number and _ the turbulence dissipation rate.
Equation (56) agrees with the heat flux contribution obtained from the second
term in (55) if the drag time associated with fluid elements of differing density
equals the turbulence dissipation time. For the momentum exchange function
(36) it can be seen that the drag time is

1 P2 r

K' P, t '- 21

when CD is approximately unity.
time is

(57)

On the other hand, the turbulence dissipation

t_ (58)

k 0

where L is a turbulence length scale. Equations (57) and (58) agree if r _ L, k_

It_l - _21 and Pl -_ p2, but when these equalities are violated more accurate heat
fluxes could be obtained using a drag time, and not a turbulence dissipation time,
to evaluate the heat flux vector.

Ill. COMPARISON WITH OTHER WORK

In this section we compare our a-equation with two others in the literature.
In the BML formulation for turbulent flames, 10 an equation is kept for the tur-

bulent flux of reaction progress variable c. Our quantity a is just a constant times
the turbulent flux of c:

PrPp (59)
pu"c" - a ,

Pr -- Pp

where Pr and pp are the reactant and product densities. Two differences are ob-
served between the a-equation one derives from the BML formulation and ours.

First,in the BML formulation it is not assumed that the conditional Reynolds

stresses within each phase are equal and isotropic.An equation for the uncondi-

tional Reynolds stress R isretained, and the difference between the conditional

Reynolds stresses ismodeled using R. Accordingly, the double and triplecorrela-
tion terms on the right-hand side of (40) are modeled in a more detailed fashion,

although the authors observelO that "this modeling is generally not found to be

too critical to the predictions of first- and second-moment unconditional

quantities."
The second difference isin the modeling of the fluctuating stressterms. The

authors follow Launder23 and model

176



E

1 ap' _ 2cl _ a - c2 a. Vu (60)
p 8x c c

where c1_ and c2,, are empirical constants. Comparison with Eq. (39) shows that
these mddels hage in common the decay of a term and that these would be the
same if

(61)
K' = 2c I = .

ck

Besnard, Harlow, and Rauenzahn4 keep equations for both the turbulent
heat flux and the quantity A = p'u', which is related to a by

- (62)
A=-pa,

since they are interested in more complicated equations of state in which the
relation (19) does not hold. Their a-equation differs from ours in several respects.
An equation for the Reynolds stress is retained and used in modeling the first
term on the right-hand side of (40). The triple correlation is broken into two
terms

p'u"u" = -2paa + p'u'u' , (63)

and the latter term is modeled by a gradient diffusion of a. There is a decay of a
that arises solely from the viscous stress terms.

IV. SUMMARY AND FUTURE WORK

We have derived a transport equation forthe quantity a, which isthe differ

ence between the volume- and mass-averaged velocitiesand is simply related to
the turbulent heat flux Oh. Using this equation and an assumption analogous to

the drift flux approximation of two-phase flow modeling, we have obtained an

algebraic closure relation for oh that exhibits fluxes due to directed transport
proportional to - Vp and due to gradient transport proportional to - VT.

Much work remains to be done before the mode] can be used in predictive

calculations of low Maeh number flows with large density variations. The equa-
tion for a involves an additional scalar b that isa measure of the density fluctua-

tions. An equation for b must be derived and terms in itmodeled. We hope to use

the a -and b-equations in conjunction with a k -_ turbulence mode]. The k- and _-

equations must be reexamined to see what modifications are needed when the
flows have large density variations. When mass transport is important, such as

in many combustion problems, expressions for the turbulent mass flux must be

developed.

In an effort to test some of the modeling assumptions we are currently
writing a one-dimensional code that solves the turbulence equations of this

paper. Computed results will be compared with experimental measurements of

Ray]eigh-Taylor instability,turbulent premixed flames, and flows with centri-
fuging and density variations. These results and extensions of the model will be

reported in future publications.
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